Abstract
Both Wnt signaling and heat shock proteins play important roles in development and disease. As such, they have been widely, though separately, studied. Here we show a link between a heat shock protein and Wnt signaling in a member of the basal phylum, Cnidaria. A heat shock at late gastrulation in the clonal marine hydrozoan, Hydractinia, interferes with axis development, specifically inhibiting head development, while aboral structures remain unaffected. The heat treatment upregulated Hsc71, a constitutive Hsp70 related gene, followed by a transient upregulation, and long-term downregulation, of Wnt signaling components. Downregulating Hsc71 by RNAi in heat-shocked animals rescued these defects, resulting in normal head development. Transgenic animals, ectopically expressing Hsc71, had similar developmental abnormalities as heat-shocked animals in terms of both morphology and Wnt3 expression. We also found that Hsc71 is upregulated in response to ectopic Wnt activation, but only in the context of stem cell proliferation and not in head development. Hsc71's normal expression is consistent with a conserved role in mitosis and apoptosis inhibition. Our results demonstrate a hitherto unknown crosstalk between heat shock proteins and Wnt/β-catenin signaling. This link likely has important implications in understanding normal development, congenital defects and cancer biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.