Abstract

Remaining useful life (RUL) prediction is of great importance in a successful prognostics and health management system. The performance of RUL prediction is mainly decided by the development of an appropriate health indicator (HI), which can accurately indicate the degree of degradation of the equipment. Therefore, we proposed an unsupervised method for HI construction based on deep belief network (DBN) by using multisensory historical data. Firstly, DBN is employed to describe the hidden representation corresponding to the healthy state. With the running of the system, its performance will decrease over time and the corresponding potential characteristics tend to be different. The deviation degree of degraded state can be used to establish HI so as to estimate the RUL. Finally, a case study is conducted to validate the effectiveness of the new method, where it can be seen that the new approach achieves better performance compared to traditional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.