Abstract

The hydrodynamic control laws of unsteady fins inspired by swimming and flying animals are considered. A controller based on cycle-averaged forces requires a bandwidth lower than the flapping frequency, with correspondingly slow reactions to disturbances or commands in order to avoid undesirable feedback from the oscillating fins. A harmonic model of the periodic thruster forces was empirically found using a mechanical fin flapping in roll and pitch in hover, in uniform flow, and under various kinematic conditions. A multi-fin vehicle could use this model to account for the dominant non-linearities and minimize undesirable motions through coordinated control of individual fins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.