Abstract
Acoustic Cluster Therapy (ACT) is a two-component formulation of commercially available microbubbles (Sonazoid; GE Healthcare, Oslo, Norway) and microdroplets (perfluorated oil) currently under development for cancer treatment. The microbubbles and microdroplets have opposite surface charges to form microbubble/microdroplet clusters, which are administered to patients together with a drug. When the clusters and drug reach the target tumour, two ultrasound (US) exposure regimes are used: First, high-frequency (>2.0 MHz) US evaporates the oil and forms ACT bubbles that lodge at the microvascular level. Second, low-frequency (0.5 MHz) US induces stable mechanical oscillations of the ACT bubbles, causing localized micro-streaming, radiation and shear forces that increase the uptake of the drugs to the target tumour. This report describes the design and testing of a dual-frequency transducer and a laboratory setup for pre-clinical in vivo studies of ACT on murine tumour models. The dual-frequency transducer utilizes the 5th harmonic (2.7 MHz) and fundamental (0.5 MHz) of a single piezoceramic disk for the high-frequency and low-frequency regimes, respectively. Two different aperture radii are used to align the high-frequency and low-frequency beam maxima, and the high-frequency –3 dB beam width diameter is 6 mm, corresponding to the largest tumour sizes we expect to treat. The low-frequency –3 dB beam width extends 6 mm. Although unconventional, the 5th harmonic exhibit a 44% efficiency and can therefore be used for transmission of acoustic energy. Moreover, both in vitro and in vivo measurements demonstrate that the 5th harmonic can be used to evaporate the microbubble/microdroplet clusters. For the in vivo measurements, we used the kidneys of non-tumour–bearing mice as tumour surrogates. Based on this, the transducer is deemed suited for pre-clinical in vivo studies of ACT and replaces a cumbersome test setup consisting of two transducers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.