Abstract

To address the problem of harmonic pollution in power systems, a harmonic and interharmonic detection method based on the adaptive order and the dominant factor algorithms is proposed. The proposed method greatly improves the accuracy and precision of harmonic detection, overcoming the notorious problem of high sensitivity to noise of the traditional Prony algorithm that often leads to unsatisfactory detection results. In the proposed method, the “adaptive order determination” algorithm is first used to determine the optimal order of Singular Value Decomposition (SVD) denoising, resulting in a more accurate distinction between signal and noise components. Then, signal reconstruction is carried out to effectively remove noise components to enhance the denoising ability of SVD. This mitigates the Prony algorithm’s high sensitivity to noise and greatly reduces the amplitude of false components in the fitting results. Finally, the dominant factor algorithm is applied to accurately screen out the non-false components in Prony’s fitting results. Simulation results show that the proposed method can effectively reduce signal noise in different noise environments with noise intensities ranging from 5 dB to 30 dB, achieving an average signal-to-noise ratio improvement of around 20 dB. Meanwhile, the identification and screening results of harmonic and interharmonic components in the signal are accurate and reliable, with detection errors in amplitude, frequency, and phase at around 0.5%, 0.01%, and 0.5%, respectively. Overall, the proposed method is well suited for detecting harmonics and interharmonics in power systems under various noise environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.