Abstract
We establish a Harder–Narasimhan formalism for modifications of $G$-bundles on the Fargues–Fontaine curve. The semi-stable stratum of the associated stratification of the ${B^+_{{\rm dR}}}$-Grassmannian coincides with the variant of the weakly admissible locus defined by Viehmann, and its classical points agree with those of the basic Newton stratum. When restricted to minuscule affine Schubert cells, the stratification corresponds to the Harder–Narasimhan stratification of Dat, Orlik and Rapoport. We also study basic geometric properties of the strata, and the relation to the Hodge–Newton decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.