Abstract

In this paper, the standard hard C-means (HCM) clustering approach to image segmentation is modified by incorporating weighted membership Kullback–Leibler (KL) divergence and local data information into the HCM objective function. The membership KL divergence, used for fuzzification, measures the proximity between each cluster membership function of a pixel and the locally-smoothed value of the membership in the pixel vicinity. The fuzzification weight is a function of the pixel to cluster-centers distances. The used pixel to a cluster-center distance is composed of the original pixel data distance plus a fraction of the distance generated from the locally-smoothed pixel data. It is shown that the obtained membership function of a pixel is proportional to the locally-smoothed membership function of this pixel multiplied by an exponentially distributed function of the minus pixel distance relative to the minimum distance provided by the nearest cluster-center to the pixel. Therefore, since incorporating the locally-smoothed membership and data information in addition to the relative distance, which is more tolerant to additive noise than the absolute distance, the proposed algorithm has a threefold noise-handling process. The presented algorithm, named local data and membership KL divergence based fuzzy C-means (LDMKLFCM), is tested by synthetic and real-world noisy images and its results are compared with those of several FCM-based clustering algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.