Abstract

The human angiotensinogen (hAGT) gene contains an A/G polymorphism at -217, and frequency of -217A allele is increased in African-American hypertensive patients. The hAGT gene has seven polymorphic sites in the 1.2-kb region of its promoter, and variant -217A almost always occurs with -532T, -793A, and -1074T, whereas variant -217G almost always occurs with -532C, -793G, and -1074G. Since allele -6A is the predominant allele in African-Americans, the AGT gene can be subdivided into two main haplotypes, -6A:-217A (AA) and -6A:-217G (AG). To understand the role of these haplotypes on hAGT gene expression and on blood pressure regulation in an in vivo situation, we have generated double transgenic mice containing human renin gene and either AA or AG haplotype of the hAGT gene using knock-in strategy at the hypoxanthine phosphoribosyltransferase locus. We show here that 1) hAGT mRNA level is increased in the liver by 60% and in the kidney by 40%; and 2) plasma AGT level is increased by approximately 40%, and plasma angiotensin II level is increased by approximately 50% in male double transgenic mice containing AA haplotype of the hAGT gene compared with the AG haplotype. In addition, systolic blood pressure is increased by 8 mmHg in transgenic mice containing the AA haplotype compared with the AG haplotype. This is the first report to show the effect of polymorphisms in the promoter of a human gene on its transcription in an in vivo situation that ultimately leads to an increase in blood pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call