Abstract

Stroke is a leading cause of disability in the U.S. Hand impairment is a common consequence of stroke, potentially impacting all facets of life as the hands are the primary means of interacting with the world. Typically, therapy is the prescribed treatment after stroke. However, a majority of stroke survivors have limited recovery and thus chronic impairment. Assistive, rather than therapeutic, devices may help these individuals restore lost function and improve independence and engagement in society. Current assistive devices, however, typically fail to address the greatest barriers to successful use with stroke survivors. In the hand, weakness and incoordination arise from a seemingly paradoxical combination of limited voluntary activation of muscles and involuntary neuromuscular hyperexcitability. Thus, profound strength deficits can be accompanied by substantial forces opposing the intended movement. The assistive device presented in this paper can provide both sufficient flexion and extension assistance to overcome these barriers. A single actuator for each digit provides flexion or extension assistance through push-pull cables guided along the dorsal side of the hand. User intent can be decoded from Electromyographic (EMG) signals to drive the device throughout the movement. EMG control is customized to the capabilities of each user by examining the voluntary EMG workspace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call