Abstract
Abstract In this article, we propose a Halpern-type subgradient extragradient algorithm for solving a common element of the set of solutions of variational inequality problems for continuous monotone mappings and the set of f-fixed points of continuous f-pseudocontractive mappings in reflexive real Banach spaces. In addition, we prove a strong convergence theorem for the sequence generated by the algorithm. As a consequence, we obtain a scheme that converges strongly to a common f-fixed point of continuous f-pseudocontractive mappings and a scheme that converges strongly to a common zero of continuous monotone mappings in Banach spaces. Furthermore, we provide a numerical example to illustrate the implementability of our algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.