Abstract

In this paper, we present a new cooperative communication scheme consisting of two users in half-duplex mode communicating with one destination over a discrete memoryless channel. The users encode messages in independent blocks and divide the transmission of each block into 3 time slots with variable durations. Cooperation is performed by partial decode-forward relaying over these 3 time slots. During the first two time slots, each user alternatively transmits and decodes, while during the last time slot, both users cooperate to send information to the destination. An achievable rate region for this scheme is derived using superposition encoding and joint maximum likelihood (ML) decoding across the 3 time slots. An example of the Gaussian channel is treated in detail and its achievable rate region is given explicitly. Results show that the proposed half-duplex scheme achieves significantly larger rate region than the classical multiple access channel and approaches the performance of a full-duplex cooperative scheme as the inter-user channel quality increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.