Abstract

Antenna, as a converter, could receive and convert signals from the outside world flexibly. Inspired by the behavior of antennas receiving external signals, we developed a pH-stimulated and aptamer-anchored Y-shaped DNA nanoantenna (termed pH-Apt-YNA) for sensitive and specific sensing of tumor extracellular pH gradients. The nanoantenna consisted of three functional nucleic acid sequences, an I-strand, Apt-Y-R and Y-L-G, where the I-strand endowed the DNA nanoantenna with the ability to receive and convert signals, the Apt-Y-R containing an aptamer fragment gave the DNA nanoantenna the ability to specifically anchor target tumor cells, and the complementarity of Y-L-G with the other two sequences ensured the stability of the DNA nanoantenna. Initially, the DNA nanoantenna was in a "silent" state, and rhodamine green was close to BHQ2, leading to suppressed signal emission. When the DNA nanoantenna anchored on the surface of target cancer cells through the aptamer recognition domain, the I-strand tended to fold into a hairpin-contained i-motif tetramer structure owing to the extracellular low pH stimuli, resulting in the DNA nanoantenna changing into an "active" state. In the meantime, rhodamine green moved far away from BHQ2, resulting in a strong signal output. The results demonstrate that the pH-Apt-YNA presents a sensitive pH sensing capacity within a narrow pH range of 6.2-7.4 and exhibits excellent specificity for the imaging of target cancer cell extracellular pH. Based on these advantages, we therefore anticipate that our facile design of the DNA nanoantenna with sensitive responsiveness provides a new way and great promise in the application of sensing pH-related physiological and pathological processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call