Abstract

Following Darji, we say that a Borel subset B of an abelian Polish group G is Haar meager if there is a compact metric space K and a continuous function f : K → G such that the preimage of the translate f−1(B + g) is meager in K for every g ∈ G. The set B is called strongly Haar meager if there is a compact set C ⊆ G such that (B + g) ⋂ C is meager in C for every g ∈ G. The main open problem in this area is Darji’s question asking whether these two notions are the same. Even though there have been several partial results suggesting a positive answer, in this paper we construct a counterexample. More specifically, we construct a Gδ set in ℤω that is Haar meager but not strongly Haar meager. We also show that no Fσ counterexample exists, hence our result is optimal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.