Abstract

Photodynamic therapy (PDT) is a light triggered therapy by producing reactive oxygen species (ROS), but traditional PDT may suffer from the real-time illumination that reduces the compliance of treatment and cause phototoxicity. A supramolecular photoactive G-quartet based material is reported, which is self-assembled from guanosine (G) and 4-formylphenylboronic acid/1,8-diaminooctane, with incorporation of riboflavin as a photocatalyst to the G4 nanowire, for post-irradiation photodynamic antibacterial therapy. The G4-materials, which exhibit hydrogel-like properties, provide a scaffold for loading riboflavin, and the reductant guanosine for the riboflavin for phototriggered production of the therapeutic H2 O2 . The photocatalytic activity shows great tolerance against room temperature storage and heating/cooling treatments. The riboflavin-loaded G4 hydrogels, after photo-irradiation, are capable of killing gram-positive bacteria (e.g., Staphylococcus aureus), gram-negative bacteria (e.g., Escherichia coli), and multidrug resistant bacteria (methicillin-resistant Staphylococcus aureus) with sterilization ratio over 99.999%. The post-irradiated hydrogels also exhibit great antibacterial activity in the infected wound of the rats, revealing the potential of this novel concept in the light therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.