Abstract
When a mutation in an essential gene shows a temperature-sensitive phenotype, one usually assumes that the protein is inactive at nonpermissive temperature. DNA gyrase is an essential bacterial enzyme composed of two subunits, GyrA and GyrB. The gyrB652 mutation results from a single base change that substitutes a serine residue for arginine 436 (R436-S) in the GyrB protein. At 42 degrees C, strains with the gyrB652 allele stop DNA replication, and at 37 degrees C, such strains grow but have RecA-dependent SOS induction and show constitutive RecBCD-dependent DNA degradation. Surprisingly, the GyrB652 protein is not inactive at 42 degrees C in vivo or in vitro and it doesn't directly produce breaks in chromosomal DNA. Rather, this mutant has a low k(cat) compared to wild-type GyrB subunit. With more than twice the normal mean number of supercoil domains, this gyrase hypomorph is prone to fork collapse and topological chaos near the terminus of DNA replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.