Abstract

Lattice oxygen activity plays a dominant role in balancing discharge capacity and performance decay of lithium-rich layered oxide cathodes (LLOs). On the basis of density functional theory (DFT) and tight-binding theory, the activity of lattice oxygen can be improved by tensile strain and suppressed by compressive strain. To verify this conclusion, LLOs with large lattice parameters (L-LLOs) were synthesized taking advantage of the lattice expansion effect in nanomaterials. Compared with conventional LLOs with small lattice parameters (S-LLOs), particles in L-LLOs are imposed by tensile strain. L-LLOs show a larger initial discharge capacity and decay faster in the prolonged cycles than S-LLOs. Actually, most of the modified methods in LLOs can come down to strain-induced changes in lattice parameters. We believe this conclusion is a useful guideline to understand and tailor the lattice oxygen activity and may be generalized to other layered oxide cathodes involving anionic redox.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call