Abstract

Fall accidents in the construction industry have been studied over several decades and identified as a common hazard and the leading cause of fatalities. Inertial sensors have recently been used to detect accidents of workers in construction sites, such as falls or trips. IMU-based systems for detecting fall-related accidents have been developed and have yielded satisfactory accuracy in laboratory settings. Nevertheless, the existing systems fail to uphold consistent accuracy and produce a significant number of false alarms when deployed in real-world settings, primarily due to the intricate nature of the working environments and the behaviors of the workers. In this research, the authors redesign the aforementioned laboratory experiment to target situations that are prone to false alarms based on the feedback obtained from workers in real construction sites. In addition, a new algorithm based on recurrent neural networks was developed to reduce the frequencies of various types of false alarms. The proposed model outperforms the existing benchmark model (i.e., hierarchical threshold model) with higher sensitivities and fewer false alarms in detecting stumble (100% sensitivity vs. 40%) and fall (95% sensitivity vs. 65%) events. However, the model did not outperform the hierarchical model in detecting coma events in terms of sensitivity (70% vs. 100%), but it did generate fewer false alarms (5 false alarms vs. 13).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.