Abstract
Diameter at breast height (DBH) is one of the most important tree parameter for forest inventory. In this paper, we present a novel method for the adaptive and the accurate DBH estimation of trees characterized by small and large stems. The method automatically discriminates among different tree growth models by means of a data-driven technique based on a clustering procedure. First, the method detects young trees belonging to the lowest forest layer by simply considering the vertical structure of the forest. Then, different clusters of mature trees that are expected to share the same growth-model are identified by analyzing the environmental factors that can affect the stem expansion (e.g., topography and forest density). For each detected growth-model cluster, a tailored regression analysis is performed to obtain accurate DBH estimation results. Experiments have been carried out in an homogeneous coniferous forest located in the Alpine mountainous scenario characterized by a complex topography and a wide range of soil fertility. The method was tested on two data sets characterized by different light detection and ranging (LiDAR) point densities and different forest properties. The results obtained demonstrate the effectiveness of having multiple regression models adapted to the different growth models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.