Abstract
The Mesozoic Yili Basin of NW China represents the largest known concentration of U deposits in China and contains five major deposits, namely (from west to east) the 512 (Kujie’ertai), 513, 511, 510 (Mengqiguer), and 509 deposits. Pre-mining resources within the explored sandstone-type uranium deposits in this area are reportedly as much as 20,000 t contained U. The mineralization is hosted by the Middle–Lower Jurassic Shuixigou Group, which (from base to top) is divided into the Badaowan, Sangonghe, and Xishanyao formations. The U-Pb isotopic analysis of ores from the Kujie’ertai and Mengqiguer deposits indicate that they contain high and variable amounts of initial (common) Pb, meaning that the only possible way to date these deposits is by using U-Pb isochrons. Two major stages of uranium mineralization have been identified by the U-Pb isotope dating of uranium ores in this region. The Kujie’ertai deposit apparently formed between 23.4 ± 3.3 and 20.18 ± 0.49 Ma, corresponding to a period of crustal thickening and uplift within the Tien Shan Orogen. This event (35–21 Ma) accommodated the majority of the strain generated by the northward collision of the Indian Plate with the Asian Plate. However, the dating of samples from the Mengqiguer deposit yielded much younger ages (between 0.61 ± 0.24 and 0.347 ± 0.0048 Ma). The western Tien Shan mountains expanded until the Pliocene as a result of the far-field influence of continuous penetration of the Indian Plate into the Asian Plate. This activated reverse faults and folds in the piedmont of the Tien Shan mountains and caused the continuous uplift of the southern flank of the Yili Basin. The uplift caused the erosion of anticline hinge zones, introducing significant amounts of oxidizing water into the Shuixigou Group, generating a second stage of uranium mineralization. Hydrological sampling also suggests that the Mengqiguer deposit continues to grow, indicating a possible third stage of uranium mineralization (∼0 Ma). This also indicates that the U within these deposits is derived not only from U-bearing sediments but from the Tien Shan mountains as a result of groundwater cycling. The evolution of the U contents of groundwater that was initially derived from cold springs that flow into the mineralized units indicates that these cold springs have an essential role in mobilizing U from the Tien Shan mountains, with rivers flowing through areas of outcropping mineralized units acting as a source of mineralizing fluids during the formation of the Mengqiguer deposit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.