Abstract

New online learning is proposed for unsupervised classification and topology representation. The combination of similarity threshold and local accumulated error suits the algorithm for nonstationary data distribution. A novel online criterion for removal of nodes is proposed to classify the data set well and eliminate noise. The use of a utility parameter, error-radius, is able to judge if insertion is successful and control the increase of nodes. As shown in experiment results, the system can represent the topological structure of unsupervised online data, report the reasonable number of clusters, and give typical prototype patterns of every cluster without priori conditions such as a suitable number of nodes or a good initial codebook.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.