Abstract

The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.

Highlights

  • Thermal environments place unavoidable behavioral and physiological constraints on all living organisms [1, 2] and determine the outcome of critical life history periods [3,4]

  • We studied the thermal ecology of nesting bobwhites at the Packsaddle Wildlife Management Area (WMA) in western Oklahoma, USA, which is near the western periphery of the North American bobwhite distribution

  • Under present conditions, mean Tbb at nest sites remained less than 39°C for the entire day but will exceed 39°C for at least 4 hours of the day under low emission scenarios and at least 6 hours of the day under high emission scenarios (Fig 6). These results provide a linkage between thermal moderation as a component of landscape function and the biologically meaningful response of a ground-nesting bird species

Read more

Summary

Introduction

Thermal environments place unavoidable behavioral and physiological constraints on all living organisms [1, 2] and determine the outcome of critical life history periods [3,4]. Landscape Thermal Patterns Influence Nest Site Selection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.