Abstract

A torque transfer system (TTS) that measures grip forces is developed to resolve a potential drawback of the current da Vinci robot system whose grip forces vary according to the different postures of its EndoWrist. A preliminary model of EndoWrist Inner Mechanism Model (EIMM) is also developed and validated with real grip force measurements. EndoWrist's grip forces, posture angles, and transferred torque are measured by using TTS. The mean measured grip forces of three different EndoWrist for 27 different postures were very diverse. The EndoWrist exerted different grip forces, with a minimum of 1.84-times more and a maximum of 3.37-times more in specific posture even if the surgeon exerted the same amount of force. Using the posture angles as input and the grip forces as output, the EIMM is constructed. Then, expected grip force values obtained from EIMM are compared with actual measurements of da Vinci EndoWrist to validate the proposed model. From these results, surgeons will be beneficial with the understandings of actual grip force being applied to tissue and mechanical properties of robotic system. The EIMM could provide a baseline in designing a force-feedback system for surgical robot. These are significantly important to prevent serious injury by maintaining a proper force to tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call