Abstract

Scientific workflows require seamless access to HPC applications, deployed on remote, globally distributed computing resources. Typically, scientific workflows are both compute- and data-intensive, and often require dynamic execution control mechanisms. We present a service-oriented infrastructure that addresses these challenges by seamlessly integrating grid computing technologies with a Cloud infrastructure to support the scheduling of dynamic scientific workflows. A case study implementing a complex scientific workflow for computing photodynamics of biologically relevant molecules, a simulation of the non-adiabatic dynamics of 2,4-pentadieneiminum-cation (Protonated Schiff Base 3 (PSB3)) solvated in Water, is realised via the presented infrastructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.