Abstract

A grid-forming voltage source converter with an integrated step-down transformer could be a promising solution for supplying low-voltage alternating current loads from a medium-voltage direct current supply. However, it may require a control system that gathers feedback signals from both the primary and secondary sides of the transformer, which in turn complicates the derivation of a standard form linear model. The absence of such a model complicates control tuning, as well as the assessment of dynamics and stability of the converter system. The objective of this paper is to address this gap in knowledge. For the case study, a conventional H-bridge converter with a step-down transformer and an αβ-frame dual-loop grid-forming controller is considered. Initially, comprehensive guidelines on deriving a standard form linear model for this converter system are presented. Then, the impact of controlling the VSC in a dq frame and the changes in the transformer vector group on the small-signal model of the VSC are analyzed. The aspects of control tuning are also discussed in detail, and the model’s accuracy and efficacy are validated both theoretically and through control hardware-in-the-loop (C-HIL) tests using a Typhoon HIL setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.