Abstract

The Grid Convergence Index () method requires at least three systematic mesh refinements, each requiring the numerical solution to be in the asymptotic range. When the observed order of accuracy differs from the formal order of accuracy, a lack of numerical precision exists which may result in erroneous conclusions. The aim of the work in this paper is to evaluate the effect the mesh resolution for structured hexahedral, unstructured hexahedral and tetrahedral mesh has on the observed order of accuracy and the accuracy of the numerical solution of the mean air flow velocity profile in indoor environments. The value was calculated based on the recommendation of the lower limit of the observed order of accuracy. For the structured hexahedral mesh, with successive grid refinements the observed order of accuracy converges close to the formal order of accuracy, while for the two other unstructured meshes it converges more gradually. The lowest value was obtained when the observed order of accuracy has reached its highest level of accuracy. In this study the turbulence model was adopted, and when the obtained numerical results were compared with another published numerical study, the comparison showed that the structured hexahedral mesh with turbulence model produced a similar result to that produced from unstructured hexahedral mesh using the turbulence model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.