Abstract

A grid-connected inverter (GCI) with LCL filters is widely used in photovoltaic grid-connected systems. While introducing active damping methods can improve the quality of grid-connected current (GCC), the influence of grid voltage disturbances can still significantly impact the quality of GCC, leading to stability degradation, especially in weak grid conditions. This paper proposes a grid-voltage-weighted feedforward control scheme based on the quasi-proportional resonance (QPR) controller. This scheme introduces compensatory terms with different proportional coefficients in the voltage feedforward, controlled by the QPR controller. Through a series of analyses, reasonable inverter parameters are first designed. Then, the proposed system model is built in Matlab Simulink. Through simulation experiments and comparisons with various types of operating conditions, the effectiveness of the proposed system scheme is validated. It minimizes the impact of grid voltage disturbances, suppresses the influence of grid harmonics on the control system, improves current quality, and enhances the stability of the GCI system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.