Abstract

We address the problem of porting parallel distributed applications from static homogeneous cluster environments to dynamic heterogeneous Grid resources. We introduce a generic technique for adaptive load balancing of parallel applications on heterogeneous resources and evaluate it using a case study application: a Virtual Reactor for simulation of plasma chemical vapour deposition. This application has a modular architecture with a number of loosely coupled components suitable for distribution over the Grid. It requires large parameter space exploration that allows using Grid resources for high-throughput computing. The Virtual Reactor contains a number of parallel solvers originally designed for homogeneous computer clusters that needed adaptation to the heterogeneity of the Grid. In this paper we study the performance of one of the parallel solvers, apply the technique developed for adaptive load balancing, evaluate the efficiency of this approach and outline an automated procedure for optimal utilization of heterogeneous Grid resources for high-performance parallel computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.