Abstract

Agent-based simulation models with large experiments for a precise and robust result over a vast parameter space are becoming a common practice, where enormous runs intrinsically require highly intensive computational resources. This paper proposes a grid based simulation environment, named Social Macro Scope (SOMAS) to support parallel exploration on agent-based models with vast parameter space. We focus on three types of simulation methods for agent-based models with various objectives (1) forward simulation to conduct experiments in a straightforward way by simply operating sets of parameter values to perform sensitivity analysis; (2) inverse simulation to search for solutions that reduce the error between simulated results and actual data by means of solving "inverse problem", which executes the simulation steps in a reverse order and employs optimization algorithms to fit the simulation results to the desired objectives; and (3) model selection to find an optimal model structure with subset of parameters and procedures, which conducts two-layer optimization to obtain a simple and more accurate simulation result. We have confirmed the practical scalability and efficiency of SOMAS by one case study in history simulation domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.