Abstract

AbstractThis article proposes a grey wolf optimizer (GWO) and cellular automata (CA) integrated model for the simulation and spatial optimization of urban growth. A new grey wolf‐inspired approach is put forward to determine the urban growth rules of CA cells by using the GWO algorithm, which is suitable for solving optimization problems. The inspiration for GWO comes from the social leadership of wolf groups, as well as their hunting behavior. The GWO‐optimized urban growth rules for CA describe the relationship between the spatial variables and the urban land‐use status for each cell in the formation of “if–then.” The GWO algorithm and CA model are then integrated as the GWO–CA model for urban growth simulation and optimization. By taking Nanjing City as an example, the simulation accuracy in terms of urban cells is 86.6%, and the kappa coefficient is 0.715, indicating that the GWO algorithm is efficient at obtaining urban growth rules from spatial variables. The validation of the GWO–CA model also illustrates that it performs well in terms of the simulation and spatial optimization of urban growth, and can further contribute to urban planning and management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.