Abstract

The exploitation of electrocatalysts with high activity and durability for the hydrogen evolution reaction is significant but also challenging for future energy systems. Transition metal phosphides (TMPs) have attracted a lot of attention due to their effective activity for the hydrogen evolution reaction, but the complicated preparation of metal phosphides remains a bottleneck. In this study, a green fabrication method is designed and proposed to construct N, P co-doped graphene (NPG)-supported cobalt phosphide (Co2P) nanoparticles by using DNA as both N and P sources. Thanks to the synergistic effect of NPG and Co2P, the Co2P/NPG shows effective activity with a small overpotential of 144 mV and a low Tafel slope of 72 mV dec-1 for the hydrogen evolution reaction. This study describes a successful green synthesis strategy for the preparation of high-performance TMPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call