Abstract

Particulate bis[1-(hydroxy-κO)-2(1H)-pyridinethionato-κS2]-(T-4)-zinc (zinc pyrithione; ZPT) in the diameter range 0.5–0.7 µm is a US FDA-approved anti-dandruff active widely used in anti-dandruff shampoos. A nanoparticulate form of ZPT is expected to exhibit a higher activity, be distributed more effectively on the scalp, require less thickening agent in the shampoo formulation to ensure its stability against settling than the standard form of ZPT, and would enable clear anti-dandruff shampoo formulations. We demonstrate, for the first time, that a green, mechanochemical nanoparticle synthesis process can be used to prepare nanoparticulate ZPT from zinc chloride and sodium pyrithione monohydrate. Both a Reeves attrition mill and a Retsch MixerMill were found to be effective tools for delivering the mechanical energy needed for the conversion. The infrared spectra and X-ray powder diffraction patterns for the products correspond to those for the known desired material. Transmission electron microscopic analysis indicates that ZPT nanoparticles with primary particle diameters in the range of 20–200 nm (mean diameters of 65–100 nm) can be obtained via this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.