Abstract

Superhydrophilic and underwater superoleophobic calcium alginate (CA) hydrogel-coated meshes (CAHMs) were prepared via a green dip-coating and self-assembly method without adding any toxic or expensive modifying agents. Since meshes possess intrinsic chemical inert characterisitics, the first CA layer was employed as a precoating and then continually facilitated deposition of CA hydrogel via coordination bonding to form extraordinary underwater superoleophobicity. All results proved that CA was introduced to generate both hydrophilic chemical compositions and rough structures onto resultant mesh surfaces. The obtained meshes, which possessed a underwater oil contact angle (UOCA) of ~154.3° and low oil sliding angle (OSA) of ~7°, could separate various oil/water mixtures with efficiency above 99% and maximum water flux up to 28,108.9 L·m−2·h−1. This separation process was spontaneous and only driven by gravity. Furthermore, as-prepared meshes still maintained high stability under corrosive organic solvents. These outstanding performances made it a promise for oil/water separation in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.