Abstract

Selective synthesis of specific phased nanomaterials via a green route is a promising yet challeng- ing task. In the present work, the hexagonal and monoclinic phases of BiPO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) were prepared via room temperature co-precipitation method. For adjusting the phase of the products, the prepared mediums selected were the most common solvents, i.e., water and ethanol. It was very important that the prepared mediums could be easily recycled and reused by evapo- rating the filtrate. The formation mechanisms of hexagonal in water and monoclinic in ethanol were investigated. Interestingly, the growth behaviors of these phases were quite distinct and thus gave rise to distinct morphology and particle size. The hexagonal phase possesses a rod-like morphol- ogy with diameters of 50-160 nm and lengths of 65-400 nm while the monoclinic phase consists of almost entirely irregular nanoparticles. Also, it was found that the bending and stretching vibrations of O-H and PO4 tetrahedra were quite different for the products prepared in water and ethanol. Moreover, it was found that the luminescence properties, including emission intensity, lifetime, quan- tum efficiency, and color, could be readily tailored through controlling the phase structures and microstructures. The results showed that the monoclinic phase exhibited superior luminescent per- formance to the hexagonal phase. The methodologies reported in this work were fundamentally important, which could be easily extended to large-scale synthesis of other phased nanomaterials for potential applications as electroluminescent devices, optical integrated circuits, or biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call