Abstract

Ionic liquid and supercritical carbon dioxide have been employed to facilitate a green pathway for solventless noble metal-catalyzed hydrogenations. The catalytic system consisted of in situ-synthesized palladium and rhodium nanoparticles stabilized by various ionic liquids ([BMIm][PF 6], [BMIm][OTf], and N(C 6H 13) 4Br). Supercritical CO 2 extraction was employed for the removal of the metal precursor ligands in the catalyst synthesis step as well as for the separation of the hydrogenation products. All steps, including catalysts synthesis, reaction, and product separation, were followed by in situ infrared spectroscopy. The potential of this concept is shown using the example of the palladium- and rhodium-catalyzed hydrogenation of acetophenone. The most efficient catalyst, Pd-[BMIm][PF 6], exhibited good activity and excellent selectivity and showed no deactivation during multiple reaction cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.