Abstract

We report on the photophysical and photovoltaic properties of a low band gap polymer bearing a quinoxaline moiety, poly(2,3-bis(3,4-bis(decyloxy)phenyl)-5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)quinoxaline) PDOPEQ, as an electron donor in bulk heterojunction solar cells blended with the acceptor 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene (PCBM). Devices were composed of PDOPEQ and varying amounts of PCBM (1 : 1, 1 : 2, 1 : 3, 1 : 4 w–w ratio). The components were spun cast from chlorobenzene (CB) and characterized by measuring current–voltage characteristics under simulated AM 1.5 conditions. The devices with 1 : 3 polymer to PCBM ratio exhibited short circuit current density (Jsc) of 0.8 mA cm−2, an open circuit voltage (Voc) of 0.2 V, and a fill factor (FF) of 0.3. Incident photon to current efficiency (IPCE) is also reported. The IPCE spectrum spans from 400 nm to 800 nm and exhibits a photocurrent contribution of ca. 5.5% at around 400 nm. The nanoscale morphology was investigated with atomic force microscopy (AFM). Photoinduced absorption spectroscopy confirms the photoinduced charge transfer in such donor acceptor blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call