Abstract

A flow system designed with solenoid valves is proposed for determination of weak acid dissociable cyanide, based on the reaction with o-phthalaldehyde (OPA) and glycine yielding a highly fluorescent isoindole derivative. The proposed procedure minimizes the main drawbacks related to the reference batch procedure, based on reaction with barbituric acid and pyridine followed by spectrophotometric detection, i.e., use of toxic reagents, high reagent consumption and waste generation, low sampling rate, and poor sensitivity. Retention of the sample zone was exploited to increase the conversion rate of the analyte with minimized sample dispersion. Linear response (r = 0.999) was observed for cyanide concentrations in the range 1-200 microg L(-1), with a detection limit (99.7% confidence level) of 0.5 microg L(-1) (19 nmol L(-1)). The sampling rate and coefficient of variation (n = 10) were estimated as 22 measurements per hour and 1.4%, respectively. The results of determination of weak acid dissociable cyanide in natural water samples were in agreement with those achieved by the batch reference procedure at the 95% confidence level. Additionally to the improvement in the analytical features in comparison with those of the flow system with continuous reagent addition (sensitivity and sampling rate 90 and 83% higher, respectively), the consumption of OPA was 230-fold lower.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call