Abstract

To solve issues of low consolidation strength, poor dust suppression effect, and secondary pollution of the current coal dust suppressors, a greener and higher-consolidation-strength composite dust suppressor was synthesized by the radical polymerization of xanthan gum (XG) as the graft substrate, methyl acrylate (MA), and vinyl acetate (VAc) as the graft monomers. Taking compressive strength as the main optimization index and viscosity and surface tension as the secondary indices, the optimum ratio of MA:VAc was 3:5 and the optimum solid content was 2%. Experiments reveal that the prepared dust suppressant can naturally infiltrate into coal to form a hard solidified layer. At a wind speed of 10 m/s, the solidified layer still maintained structural integrity, indicating that the dust suppressant exhibits a good dust fixation effect. The dust suppressant can not only maintain relatively stable performance for a period of time but also degrade naturally. Furthermore, molecular dynamics simulation reveals not only the interaction mechanism between coal molecules and the dust suppressor but also the wetting mechanism of the dust suppressor. Experimental and simulation results reveal that as a multifunctional dust suppressor with excellent performance, the as-prepared dust suppressor demonstrates the immense potential for the control of coal dust. Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.