Abstract

ZnO hollow spheres have been synthesized by a simple and environmentally friendly template assisted route. Starch-derived carbonaceous spheres were used as template, impregnated with Zn(CH3COO)2·2H2O to obtain zinc-containing precursor spheres and thermally treatment at 600°C, yielding hollow ZnO spherical shells. The precursor spheres and hollow shells were characterized by X-ray diffraction, FTIR spectroscopy, scanning electron microscopy, thermal analysis and room-temperature photoluminescence measurements. The hollow spherical shells with diameters of ∼150nm and wall thickness of ∼20nm, are polycrystalline, with a mean crystallite size of 22nm, exhibiting interesting emission features, with a wide multi-peak band covering blue and green regions of the visible spectrum. The photocatalytic activities (under UV and visible light irradiations) of the ZnO spherical shells evaluated for the phenol degradation reaction in aqueous solutions are outstanding, a total phenol conversion being registered in the case of UV irradiation experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call