Abstract

Development of simple, environment friendly and effective approaches for the synthesis of graphene oxide (GO) is highly demanded because of its widespread applications. The present study focuses on synthesis of GO coupled with simultaneous conversion of waste byproduct as novel products, which was further used to synthesize Mn3O4 nanoparticle (Mn3O4NP), composite of GO with Mn3O4NP (rGO-Mn3O4NC) and high purity K2SO4 crystal. The characterization of GO, Mn3O4NP, and rGOMn3O4NC demonstrates the formation of single layer ∼2 μm lateral GO, ∼15 nm sized Mn3O4NP, and thermally stable rGO-Mn3O4NC. The experimental yields of GO, Mn3O4NP, and K2SO4 were 1.72, 2.04, and 87.0 g from 1.0, 4.0g, and 25.0mL of graphite, KMnO4, and H2SO4. The specific surface area of GO, Mn3O4NP, and rGO-Mn3O4NC were found to be 152.5, 233, and 27.6 m2/g, respectively. The adsorptive removal of lead (Pb2+) and methylene blue (MB) from aqueous solution by GO, Mn3O4NP, and rGO-Mn3O4NC shows an adsorption capacity of 42.3, 219, and 105 mg/g, for Pb2+ and 366, 7.5, and 17.5 mg/g, for MB, respectively. The cost analysis reveals that the proposed synthesis route is comparatively quite competitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.