Abstract

Pemigatinib (PGT) is a recently FDA-approved small molecule kinase inhibitor used for the treatment of relapsed or refractory myeloid/lymphoid neoplasms in adults. This study introduces the development of a first microwell spectrofluorimetric method (MW-SFM) for quantifying PGT in FDA-approved tablets and plasma samples. The method utilized the enhancement of PGT's weak native fluorescence by blocking photoinduced electron transfer (PET) and micellization with sodium lauryl sulfate (SLS). The MW-SFM was performed in 96-microwell plates, and fluorescence signals were measured using a fluorescence microplate reader with excitation at 290 nm and emission at 350 nm. The method exhibited a linear range of 2-250 ng mL-1, and a limit of quantitation was 6.5ng mL-1. The accuracy and precision of the method were confirmed with recovery rates ranging from 96.5% to 102.8% and relative standard deviations of 1.52% to 3.51%. The MW-SFM successfully analyzed Pemazyre® tablets, assessed content uniformity, and analyzed PGT-spiked human plasma samples. The greenness of the MW-SFM was verified using three different metric tools. In conclusion, the proposed MW-SFM is a valuable tool in supporting quality assessment of dosage forms, conducting pharmacokinetic studies, and monitoring therapeutic outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call