Abstract

A facile and green route to fabricate sustainable and biodegradable tridimensional interconnected hierarchically meso- and macroporous polylactide (PLA) monoliths was developed. The tunable morphologies and controllable pore sizes of the monoliths based on the stereocomplex (sc) crystallization of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) during the melt blending process were caused by the macro- and microphase separation between PLA and poly(ethylene oxide) (PEO). The proposed approach can be easily scaled-up and is environmentally sustainable, and it involves neither any toxic chemical reagents nor templates. The hierarchical morphologies of the porous materials contain mesopores regulated by the sc crystallite network formed during melt processing and macropores induced by macrophase separation. The porous structure was influenced by PDLA contents seriously, and the construction of interconnected pores made up of sc crystallite tridimensional network appears at a low PEO content of 20 wt %. The...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.