Abstract
In this work, we spotlight an economical, green fabrication of bio-supercapacitor material using nanostructured hydroxyapatite (FNHAp). FNHAp employed is derived from the abundant fish scale waste acquired from Garra mullya fish via a facile alkaline heat treatment technique. The structural geometry, functional groups, morphological views and compositional analysis has been done by powder X-ray diffractometer (PXRD), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Energy-dispersive X-ray spectroscopy (EDX). All the results authenticate the successful synthesis of FNHAp. The capacitive performance has been studied by the electrochemical techniques such as cyclic voltammetry (CV), Electrochemical impedance spectroscopy (EIS), and Galvanostatic charge–discharge method (GCD). The mechanical cyclic stability over 1000 cycles at a current density of 1 mA/g with good coulombic efficiency of 84%. The developed biocompatible material displays great potential to offer a green alternative to conventional supercapacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.