Abstract
In this paper we introduce a Model Order Reduction (MOR) algorithm based on a sparse grid adaptive refinement, for the approximation of the eigensolutions to parametric problems arising from elliptic partial differential equations. In particular, we are interested in detecting the crossing of the hypersurfaces describing the eigenvalues as a function of the parameters.The a priori matching is followed by an a posteriori verification, driven by a suitably defined error indicator. At a given refinement level, a sparse grid approach is adopted for the construction of the grid of the next level, by using the marking given by the a posteriori indicator.Various numerical tests confirm the good performance of the scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.