Abstract

A key challenge in inverse problems is the selection of sensors to gather the most effective data. In this paper, we consider the problem of inferring the initial condition to a linear dynamical system and develop an efficient control-theoretical approach for greedily selecting sensors. Our method employs a Galerkin projection to reduce the size of the inverse problem, resulting in a computationally efficient algorithm for sensor selection. As a byproduct of our algorithm, we obtain a preconditioner for the inverse problem that enables the rapid recovery of the initial condition. We analyze the theoretical performance of our greedy sensor selection algorithm as well as the performance of the associated preconditioner. Finally, we verify our theoretical results on various inverse problems involving partial differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.