Abstract
The greedy method is a well-known technique for solving various problems so as to optimize (minimize or maximize) specific objective functions. As pointed by Dechter et al [1], greedy method is a controlled search strategy that selects the next state to achieve the largest possible improvement in the value of some measure which may or may not be the objective function. In recent years, many modern algorithms or heuristics have been introduced in the literature, and many types of improved greedy algorithms have been proposed. In fact, the core of many Meta-heuristic such as simulated annealing and genetic algorithms are based on greedy strategy. “The one with maximum benefit from multiple choices is selected” is the basic idea of greedy method. A greedy method arrives at a solution by making a sequence of choices, each of which simply looks the best at the moment. We refer to the resulting algorithm by this principle the basic greedy (BG) algorithm, the details of which can be described as follow:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.