Abstract

Recent studies have shown that a small subset of Single Nucleotide Polymorphisms (SNPs) (called tag SNPs) is sufficient to capture the haplotype patterns in a high linkage disequilibrium region. To find the minimum set of tag SNPs, exact algorithms for finding the optimal solution could take exponential time. On the other hand, approximation algorithms are more efficient but may fail to find the optimal solution. We propose a hybrid method that combines the ideas of the branch-and-bound method and the greedy algorithm. This method explores larger solution space to obtain a better solution than a traditional greedy algorithm. It also allows the user to adjust the efficiency of the program and quality of solutions. This algorithm has been implemented and tested on a variety of simulated and biological data. The experimental results indicate that our program can find better solutions than previous methods. This approach is quite general since it can be used to adapt other greedy algorithms to solve their corresponding problems. The program is available upon request.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.