Abstract

A two-stage memory architecture is maintained within the framework of great deluge algorithm for the solution of single-objective quadratic assignment problem. Search operators exploiting the accumulated experience in memory are also implemented to direct the search towards more promising regions of the solution space. The level-based acceptance criterion of the great deluge algorithm is applied for each best solution extracted in a particular iteration. The use of short- and long-term memory-based search supported by effective move operators resulted in a powerful combinatorial optimization algorithm. A successful variant of tabu search is employed as the local search method that is only applied over a few randomly selected memory elements when the second stage memory is updated. The success of the presented approach is illustrated using sets of well-known benchmark problems and evaluated in comparison to well-known combinatorial optimization algorithms. Experimental evaluations clearly demonstrate that the presented approach is a competitive and powerful alternative for solving quadratic assignment problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.