Abstract

AbstractWe present a novel algorithm that predicts the probability that the time derivative of the horizontal component of the ground magnetic field dB/dt exceeds a specified threshold at a given location. This quantity provides important information that is physically relevant to geomagnetically induced currents (GICs), which are electric currents associated with sudden changes in the Earth's magnetic field due to space weather events. The model follows a “gray‐box” approach by combining the output of a physics‐based model with machine learning. Specifically, we combine the University of Michigan's Geospace model that is operational at the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center, with a boosted ensemble of classification trees. We discuss the problem of recalibrating the output of the decision tree to obtain reliable probabilities. The performance of the model is assessed by typical metrics for probabilistic forecasts: Probability of Detection and False Detection, True Skill Statistic, Heidke Skill Score, and Receiver Operating Characteristic curve. We show that the ML‐enhanced algorithm consistently improves all the metrics considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.