Abstract
SUMMARY Gravity gradients are an effective method for delineating the extent of subsurface density anomalies. The change in subsurface density contrasts due to the seismic deformation gives rise to detectable gravity changes via the dilatational gravity signal or Bouguer anomaly. Solutions for the corresponding gravity gradients of these signals are developed for a vertical strikeslip fault. Gravity gradient solutions exhibit similar spatial distributions as those calculated for Coulomb stress changes, reflecting their physical relationship to the stress changes. The signals’ magnitudes, of the order of 10 −4 E, are beyond the resolution of typical exploration instruments. Improvements to Superconducting Gravity Gradiometers are necessary for gravity gradients to be used as a viable method for the observation of the stress field changes over large spatial scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.