Abstract

Since late in the 20th century, various heuristic and metaheuristic optimization methods have been developed to obtain superior results and optimize models more efficiently. Some have been inspired by natural events and swarm behaviors. In this chapter, the authors illustrate empirical applications of the gravitational search algorithm (GSA) as a new optimization algorithm based on the law of gravity and mass interactions to optimize closed-loop logistics network. To achieve these aims, the need for a green supply chain will be discussed, and the related drivers and pressures motivate us to develop a mathematical model to optimize total cost in a closed-loop logistic for gathering automobile alternators at the end of their life cycle. Finally, optimizing total costs in a logistic network is solved using GSA in MATLAB software. To express GSA capabilities, a genetic algorithm (GA), as a common and standard metaheuristic algorithm, is compared. The obtained results confirm GSA’s performance and its ability to solve complicated network problems in closed-loop supply chain and logistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.